Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery.

نویسندگان

  • Yongsheng Ma
  • Jennifer C Pacan
  • Qi Wang
  • Yongping Xu
  • Xiaoqing Huang
  • Anton Korenevsky
  • Parviz M Sabour
چکیده

This paper reports the development of microencapsulated bacteriophage Felix O1 for oral delivery using a chitosan-alginate-CaCl(2) system. In vitro studies were used to determine the effects of simulated gastric fluid (SGF) and bile salts on the viability of free and encapsulated phage. Free phage Felix O1 was found to be extremely sensitive to acidic environments and was not detectable after a 5-min exposure to pHs below 3.7. In contrast, the number of microencapsulated phage decreased by 0.67 log units only, even at pH 2.4, for the same period of incubation. The viable count of microencapsulated phage decreased only 2.58 log units during a 1-h exposure to SGF with pepsin at pH 2.4. After 3 h of incubation in 1 and 2% bile solutions, the free phage count decreased by 1.29 and 1.67 log units, respectively, while the viability of encapsulated phage was fully maintained. Encapsulated phage was completely released from the microspheres upon exposure to simulated intestinal fluid (pH 6.8) within 6 h. The encapsulated phage in wet microspheres retained full viability when stored at 4 degrees C for the duration of the testing period (6 weeks). With the use of trehalose as a stabilizing agent, the microencapsulated phage in dried form had a 12.6% survival rate after storage for 6 weeks. The current encapsulation technique enables a large proportion of bacteriophage Felix O1 to remain bioactive in a simulated gastrointestinal tract environment, which indicates that these microspheres may facilitate delivery of therapeutic phage to the gut.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microencapsulation in Alginate and Chitosan Microgels to Enhance Viability of Bifidobacterium longum for Oral Delivery

Probiotic microorganisms are incorporated into a wide variety of foods, supplements, and pharmaceuticals to promote human health and wellness. However, maintaining bacterial cell viability during storage and gastrointestinal transit remains a challenge. Encapsulation of bifidobacteria within food-grade hydrogel particles potentially mitigates their sensitivity to environmental stresses. In this...

متن کامل

Preparation and Evaluation of Sustained Release Microsphere of Norfloxacin Using Sodium Alginate

Oral controlled drug delivery systems represent the most popular form of sustained drug delivery systems for the obvious advantages of oral route of drug administration. Such systems release the drug with constant or variable release rates. The oral controlled release systems shows a typical pattern of drug release in which the drug concentration is maintained in the therapeutic window for a pr...

متن کامل

Immune Response Following Oral Immunization with BCG Encapsulated in Alginate Microspheres

Background: Different methods have been used for BCG vaccination. Alginate microspheres are useful in delivery of vaccines to the gastrointestinal tract by oral route. Objective: To compare the immune response following oral microencapsulated and subcutaneous (SC) route administration of BCG vaccine in BALB/c mice. Methods: Alginate microspheres were produced by an internal emulsification metho...

متن کامل

Multiparticulate System for Colon Targeted Delivery of Ondansetron

Targeted delivery of drugs to colon has the potential for local treatment of a variety of colonic diseases. The main objective of the study was to develop a multiparticulate system containing chitosan microspheres for the colon targeted delivery of ondansetron for the treatment of irritable bowel syndrome. This work combines pH-dependent solubility of eudragit S-100 polymers and microbial degra...

متن کامل

Chitosan-Alginate Microcapsules Provide Gastric Protection and Intestinal Release of ICAM-1-Targeting Nanocarriers, Enabling GI Targeting In Vivo.

When administered intravenously, active targeting of drug nanocarriers (NCs) improves biodistribution and endocytosis. Targeting may also improve oral delivery of NCs to treat gastrointestinal (GI) pathologies or for systemic absoption. However, GI instability of targeting moieties compromises this strategy. We explored whether encapsulation of antibody-coated NCs in microcapsules would protect...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 74 15  شماره 

صفحات  -

تاریخ انتشار 2008